Spatial Query Estimation without the Local Uniformity Assumption

نویسندگان

  • Yufei Tao
  • Christos Faloutsos
  • Dimitris Papadias
چکیده

Existing estimation approaches for spatial databases often rely on the assumption that data distribution in a small region is uniform, which seldom holds in practice. Moreover, their applicability is limited to specific estimation tasks under certain distance metric. This paper develops the Power-method, a comprehensive technique applicable to a wide range of query optimization problems under both L1 and L2 metrics. The Power-method eliminates the local uniformity assumption and is, therefore, accurate even for datasets where existing approaches fail. Furthermore, it performs estimation by evaluating only one simple formula with minimal computational overhead. Extensive experiments confirm that the Power-method outperforms previous techniques in terms of accuracy and applicability to various optimization scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Selectivity of Spatial Queries Using the 'Correlation' Fractal Dimension

We examine the estimation of selectivities for range and spatial join queries in real spatial databases. As we have shown earlier [FK94], real point sets: (a) violate consistently the “uniformity” and “independence” assumptions, (b) can often be described as “fractals”, with non-integer (fractal) dimension. In this paper we show that, among the infinite family of fractal dimensions, the so call...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Accurate Modeling of Region Data

Spatial data appear in numerous applications, such as GIS [8, 9, 18], multimedia [6] and even traditional databases. Most of the analysis has focused on point data, typically using the uniformity assumption, or, more accurately, a fractal distribution [5]. However, no results exist for non-point spatial data, like 2-d regions (e.g., islands), 3-d volumes (e.g., physical objects in the real worl...

متن کامل

Efficient k Nearest Neighbor Queries on Remote Spatial Databases Using Range Estimation (Draft Version)

K-Nearest Neighbor (k-NN) queries are used in GIS and CAD/CAM applications to find the k spatial objects closest to some given query points. Most previous k-NN research has assumed that the spatial databases to be queried are local, and that the query processing algorithms have direct access to their spatial indices, e.g. R-trees. Clearly, this assumption does not hold when k-NN queries are dir...

متن کامل

Efficient k Nearest Neighbor Queries on Remote Spatial Databases Using Range Estimation

K-Nearest Neighbor (k-NN) queries are used in GIS and CAD/CAM applications to find the k spatial objects closest to some given query points. Most previous k-NN research has assumed that the spatial databases to be queried are local, and that the query processing algorithms have direct access to their spatial indices; e.g., R-trees. Clearly, this assumption does not hold when k-NN queries are di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • GeoInformatica

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2006